

Welcome!

Webinar #32: Advanced Features in Thermoflex 07 Mar 2019

Agenda:

- * Introduction
- * Control Loops
- * Searcher
- * Classic Macros
- * Shaft Power
- * Q & A Session

Advanced Features in THERMOFLEX

Thermoflow

Advanced Features in THERMOFLEX

- Previous Webinars
 - Catalogs
 - Scripts
 - Assemblies
 - User Defined Data Model
 - User Defined Component
 - Link / Import to other TF programs
- Current Webinar
 - Control Loop
 - Searcher
 - Classic Macro (Multiple Runs / Excel)
 - Shaft Power
- Future Webinars
 - Graphical Options and customized outputs
 - Fuel Demand Model \rightarrow NOVOPRO

- \rightarrow Webinar 25
- \rightarrow Webinar 2 & 24
- \rightarrow Webinar 1
- \rightarrow Webinar 30
- \rightarrow Webinar 19
- \rightarrow Webinar 8

Thermoflow Advanced Features in THERMOFLEX

- The Intention
 - What is the function and objective of each feature
 - How and where to activate the feature
 - What are the inputs which need to be defined
 - What are the outputs we get, where we can find them and how to define UD outputs
 - Show interesting considerations of each feature
 - Show how the features work through examples

\rightarrow Go to **HELP** for further details

→ Check the predefined **Samples** (detailed description in Help / Appendix A)

- **Function**: Adjust certain *Control Variables* to cause:
 - a Set Point Variable to attain a desired value \rightarrow Set Point Control
 - a pair of variables to be equal
- Procedure:
 - Edit Inputs: Define / Control Loops
 - Enable Control Loop
 - Define Control Objective: Select Output Objective, set Value and Tolerance
 - Select Control Inputs: Select Control Variable(s) and set the limits
 - Outputs: Graphics / Control Output

→ Parameter Matching Control

f Thermoflow

Control Loop

Define Control Loops	
Define Control Objective	Select Control Inputs
Total Number of Control Loop = 1 Current Control Loop No. 1 Control Loop1	Add Another Control Loop Remove Current Control Loop
Type of Control	C Parameter Matching Control
Select Output Objective	
[LuputA] Net power Output B	
Set Point Value for Output A 40000 Tolerance: 0.001	kW As fraction, unless Set Point = 0

Considerations:

- Can be used in TD-ED & OD modes
- Can be used to represent a real Control Loop or just to meet the value of a variable which doesn't have a direct input
- Check the upper / lower control limits to ensure continuity
- Compatibility:
 - Classic Macros: always enabled
 - Multiple Runs: maybe enabled / disabled
 - Elink: use formulas to enable / disable
- In TFX it's possible to have several CL in the same file (only 1 in GTM)
- In TFX most of the variables are available (just a few in GTM)
- TFX doesn't save and store intermediate computation files

Examples:

- Rankine Cycle, TD mode: steam massflow to attain a certain Gross Power
- CC1P, OD mode: GT % Fogger Effectiveness Duct Burner to attain a Net Power
- Sample S3-14: Parameter Matching
- Sample S2-07, similar to CC1P OD
- Sample S3-13, valve pressure control

©Thermoflow Inc. 2019 – Webinar: Advanced Features in TFX, 07 Mar, 2019 by IGNACIO MARTIN

Lower Control: Gas Turbine (GT PRO) [1] : GT load as percent of site rating = 100 % Primary Control: Fogger [25] : Effectiveness = 95 % Upper Control: Duct Burner - Horizontal HRSG [23] : Desired exit temperature = 553,2 C

Parameter Matching

- Function: to maximize or minimize an output parameter (*Target*) by varying an input parameter (*Adjuster*)
- **Procedure**:
 - Edit Inputs mode: Define / Searcher
 - Enable Searcher
 - Select the Target, maximum or minimum and the tolerance
 - Select the Adjuster and define:
 - Adjuster type: continuos (number of steps) or discrete (increment)
 - Range: minimum and maximum
 - Starting point
 - Search Method

- **Outputs**: in outputs mode:
 - Default outputs:
 - Text outputs → Table: Adjuster and Target
 - Graphics outputs → Graphic: Target vs Adjuster
 - User Defined Outputs:
 - Edit Inputs mode: Define /Searcher /Define Outputs
 - Add Plots (Select X and Y) \rightarrow Graphics Output
 - Define Table: Select Table parameters \rightarrow Text Output

Searcher (1 of 1)	
Define Searcher	Define Output
Inlet P	▼ New
🔽 Enable Sear	cher
Target	
Select	Net electric efficiency(LHV) 48,51 %
	C Search for minimum Tolerance 1.0E-4 fraction
Adjuster Select	ST Group [8] : Design point Inlet pressure (upstream of any stop or control valves) 42,22 bar
	Adjuster Type: C Continuous Initial number of steps 10 C Discrete Increment 1
	Range: Minimum 20 bar Maximum 60 bar
	Starting Point: Range minimum
	Search Method:
	<u>Q</u> K

Searcher Inlet P		Units	1	2	3	4	5	6	7	8	9	10
ST Group [8] : Design point Inlet pressure	Adjuster	bar	20,00	24,44	28,89	33,33	37,78	42,22	46,67	51,11	55,56	60,00
Net electric efficiency(LHV)	Target	%	48,21	48,34	48,42	48,46	48,49	48,51	48,51	48,50	48,49	48,47

©Thermoflow Inc. 2019 – Webinar: Advanced Features in TFX, 07 Mar, 2019 by IGNACIO MARTIN

Considerations:

- Can be used in TD-ED & OD modes
- Allows to select cost or financial outputs as Target
- TFX doesn't save and store intermediate computation files
- Compatibility with ELINK
- Difference with Control Loop: unknown vs known target output
- Difference with Macro /MR /ELINK: target value vs trends

Examples:

- CC 1P at TD: ST inlet Pressure to maximize Efficiency
- Rankine cycle at TD: FWH Delta T to maximize Efficency (Scripts)
- Sample (S5-10a): OD number of operating ACC cells to maximize Net Power (discrete)
- Sample (S2-38): OD number of operating CT cells to maximize Net Power (continuos)
- ELINK: same as S2-38 with 1 or 2 CW Pumps in operation

ST Inlet Pressure to maximize the Efficiency (TD Mode)

Searcher Searcher(1)		Units	1	2	3	4	5	6	7	8	9	10	11	12
Custom Inputs: Delta T	Adjuster	С	30,0	35,6	41,1	46,7	52,2	57,8	63,3	66,0	68,9	70,2	74,4	80,0
Gross electric efficiency(LHV)	Target	%	35,33	35,67	35,96	36,19	36,38	36,50	36,56	36,58	36,57	36,56	36,52	36,39

f Thermoflow

Searcher

Number of operating Cooling Tower Cells to maximize the Net Power (OD Mode)

Searcher		Units	1	2	3	4	5	6	7	8	9
Wet Cooling Tower (PCE) [16] : Load parameter (% cell operating)	Adjuster	%	20,0	40,0	55,3	58,9	60,0	64,7	70,6	80,0	100,0
Net power	Target	kW	376.891	381.743	383.503	383.619	383.619	383.619	383.495	383.495	383.063

- **Function**: to perform calculation of a series of cases with varying input parameters
- **Procedure**:
 - Edit Inputs mode: Define / Classic Macro Inputs
 - Enable Macros
 - Define number of cases to be run
 - Select the (inputs) Macro Variables
 - Set values for Macro cases
- **Outputs**: in outputs mode: Define / Classic Macro Outputs
 - Macro Cases: view the outputs of the different cases
 - Define Macro Table \rightarrow Text outputs
 - Define Macro Plots \rightarrow Graphics outputs

Parameter	Units	Case 1	Case 2	Case 3	Case 4	Case 5
ST Group [1] : Design point inlet pressure	bar	20	40	60	80	100
Package Boiler [5] : Defined outlet temperature	С	400	400	400	400	400
Water-cooled Condenser [2] : Design point condenser pressure	bar	0,1	0,1	0,1	0,1	0,1
Gross power	kW	23318	24853	25391	25500	25339
Gross electric efficiency(LHV)	%	25,51	27,52	28,49	29,04	29,32

Define Macro Inputs						
Clear All Macro Cases & Exit		🔽 Maci	ro enabled	0	ĸ	Cancel
Select Macro Variables	Ì		Set Value:	s for Macro	Cases	
ST Group [1] : Design point inlet pressure bar		•				
,		_		Con	puting Re	inge
Varied from 20 @ Case 1 VD	date Table w/	Current Inputs		from C	ase 1	•
to 100 @ Case 5 💌				to C	ase 5	•
Parameter	Units	Case 1	Case 2	Case 3	Case 4	Case 5
ST Group [1] : Design point inlet pressure	bar	20	40	60	80	100
Package Boiler [5] : Defined outlet temperature	C	400	400	400	400	400
Water-cooled Condenser [2] : Design point condenser pressure	bar	0,1	0,1	0,1	0,1	0,1

Considerations:

- Can be used at TD- ED & OD modes
- Differences with *Multiple Runs* and *ELINK*
 - Only available in TFX
 - Limitations in the range of parameters,

especially PEACE components

- No base case to compare with
- All the cases saved in a single file

Examples:

- Rankine cycle at TD: effect of the ST inlet Pressure variation (above)
- Sample (S3-02a): GT Cogeneration plant at OD across a range of ambient T

f Thermoflow

Effect of the Ambient Temperature

Parameter	Units	Case 1	Case 2	Case 3	Case 4	Case 5
Ambient temperature	F	40	60	80	100	120
Gross power	kW	41.225	38.451	35.535	32.802	29.979
Net power	kW	40.467	37.722	34.837	32.132	29.338
Gross electric efficiency(LHV)	%	32,49	31,93	31,24	30,48	29,45
Net electric efficiency(LHV)	%	31,89	31,32	30,63	29,86	28,82
CHP efficiency	%	78,75	80,04	81,38	82,71	84,01
Mass Flow of Stream 13 @ exit of Superheater	lb/s	52,39	51,65	50,80	50,01	49,36

Power variation with Ambient Temperature

- **Function**: to organize and operate the different shafts from rotating components, and balance free shafts
- Thermoflex logic for assigning shaft numbers
- Shaft Diagram
- Balancing Shaft

Thermoflex logic for assigning shaft numbers:

- Each GT PRO Gas Turbine is placed on its own shaft, driving its own generator
- All Gas/Air Compressors, Gas/Air Turbines, and Cooled Turbine Stages in a model are placed on one shaft
- All Steam Turbines components in a model are placed on one, common shaft, driving a generator
- All Ammonia/Water Turbines in a model are placed on one shaft
- Pumps, Fans, Fuel Compressors, Refrigerant Compressors, Ammonia/Water Compressors, and Steam Compressors, are each placed on its own shaft, each to be driven by its own motor.
- *Refrigerant Turbines* and *Water Turbines* are each placed on its own shaft

Thermoflow

Shaft Power

Balancing Shaft

- Edit Inputs mode: Define / Shaft Power
- Disposition of Power: Free Shaft
- Operating Mode:
 - Fixed rpm:
 - Select variable to balance the free shaft and set the limits
 - Variable rpm (only in OD mode):
 - TFX finds the variable rpm to balance the shaft

- Examples
 - GT driving a Fuel Compressor at TD: massflow of fuel which can be compressed
 - GT driving a Fuel Compressor at OD: % of GT to compress a given massflow of fuel
 - Sample (S2-24): 3 Shaft Aeroderivative GT, balancing 2 shafts at TD
 - Sample (S2-24a): 3 Shaft Aeroderivative GT, balancing 2 shafts at OD, variable speed

Define Shaft	Shaft Balancing Parameters	
Shaft #1		
Shaff 1		
Isuar		
Shaft name is e	ditable in the combo box. Press <enter> to confirm the change</enter>	
- Operating Mode	Eval Commencer (9)	
Fixed RPM	C Variable RPM Gas Turbine (GT PRO) [1]	
Disposition of P	ower	
C Matar		
1000		
C Generator		
C Export/Import	Mechanical Power	
(Free Shart		
Shaft Power	0	
	Disposition of Shoft Dowor (Total 1 Shafte)	
	Define Shaft	rameters
	Shaft 1	kW
	Fuel Compressor [9]	-51497,5
	Gas Turbine (GT PRO) [1]	51497,5
	Shaft Power	0
	Primary Variable to Balance Shaft	
	Select Variable Evel Source [9] : Mass flow t/b	
	Fuel Source [o] . Mass now the	
	Remove Variable from 400,1 to 7	00
	Current Value 476,2	
	└── Variable for Eliminating Excess Shaft Power	
	To reduce shaft power	
	Select Variable	
	Communication from the	
	Hemove Variable	
	Current Value	
	Variable for Increasing Shaft Power	
	To increase shaft nower	
	Select Variable	
	Remove Variable from to	
	Remove Variable from to Current Value	

Balancing Shaft by varying the massflow of fuel to be compressed (TD Mode)

26-60 #1	
Shaft 1	•
Shaft name is editable in the combo box. Pres	s <enter> to confirm the change</enter>
Operating Mode	Gas/Air Compressor [2] - LPC Gas/Air Turbine [4] - LPT
Disposition of Power	
C Generator C Export/Import Mechanical Power	
Free Shaft Shaft Power -0,6523	

Balancing Shaft by varying the speed of the 2 free shafts (OD Mode)

Q & A Session

- Please forward your questions on the WebEx Chat
- Further questions by email to: info@thermoflow.com

- PP Presentation will be available on the Website / Tutorials
- Video will be available on the Service Center

Thank you!

IGNACIO MARTIN - SPAIN martin@thermoflow.com

©Thermoflow Inc. 2019 – Webinar: Advanced Features in TFX, 07 Mar, 2019 by IGNACIO MARTIN